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Comment 

R. DENNIS COOK and SANFORD WEISBERG* 

In his work on SIR, Ker-Chau Li has made important 
advances on at least three related fronts: regression diag- 
nostics, statistical graphics, and dimension reduction. 
Moreover, the general idea that useful progress in regres- 
sion can be made from an inverse view may change the 
way that we think about some aspects of these problems 
and promises to become a useful paradigm for the devel- 
opment of new methodology. As with almost any important 
new technique, however, the ideas in his article raise as 
many questions as they answer. 

I. THE INVERSE REGRESSION PROBLEM AND SIR 

There are several key assumptions that underlie inverse 
regression methodology. The first of these is the model it- 
self, given by equation (1. I), in which Li assumes that the 
response y depends on the p predictors x only through K 
linear combinations of them, where it is hoped that K is 
much less than p for an uncomplicated analysis. This model 
makes no assumption about the form of the dependence. 
Although in Li's examples the dependence is through the 
mean, <t could equally well be through the variance or even 
a higher moment. Indeed, an example where (1.1) may be 
a useful starting point is in the simultaneous modeling of 
the mean and variance functions (Aitken 1987). Model (1.1) 
is certainly sufficiently general to include most usual mod- 
eling paradigms as special cases. 

Regression predictors are usually viewed as ancillary 
variables, and most analyses are conditional on their ob- 
served values. Except for concerns such as influence, le- 
verage, and extrapolation, the distribution of the predictors 
is generally considered to be irrelevant in regression anal- 
yses. Li has changed this perspective and clearly demon- 
strated that important progress can be made from an inverse 
view, particularly in the diagnostic phase of an analysis where 
the specification of the moments of the conditional distri- 
bution of y given x is a crucial issue. We view the search 
for inverse regression, for which SIR is one particular 
method, as providing diagnostic help in graphically char- 
acterizing the dependence of y on x. 

Although the intent behind SIR is similar to graphical 
diagnostics based on more traditional ideas (Cook and 
Weisberg 1989), there are important differences. Perhaps 
the most common diagnostic paradigm is to look for ad- 
ditional structure as deviations from a tentative but fully 
specified model. In contrast, SIR and other forms of in- 
verse regression can be carried out without specifications 
about the structure of the conditional moments of y given 
x. It seems to us that methods based on inverse regression 
provide easily obtained diagnostics for problems that can 

be very difficult to handle with standard forward methods, 
although they may be somewhat handicapped if, for ex- 
ample, it is known that y depends on x only through 
var(y I x). 

The progress represented by these methods does not come 
without strings attached. At least at first glance, the design 
Condition (3.1) seems to be so limiting that it casts doubt 
on the usefulness of the methodology in any but very spe- 
cial circumstances. For example, Condition (3.1) seems to 
rule out many standard experimental designs, regression 
problems with indicator variables, and the ability to refine 
the model by including functionally related terms, such as 
polynomials. In some of these settings, we can think of 
applying SIR or a similar method to residuals rather than 
to raw responses, but is such an application theoretically 
tractable? An appropriate definition of residuals in nonnor- 
ma1 settings can be elusive when the model is fully spec- 
ified (e.g., see Cox and Snell 1968) and is more so in the 
context of Li's equation (1.1). 

Condition (3.1) is actually a characterization of elliptical 
symmetry. To see this and to provide a sketch of a slightly 
different proof of Theorem 3.1, we will work in terms of 
the standardized variate z. Let q = (ql,  . . ., qk), where q 
is the jth standardized e.d.r. direction as defined in Cor- 
ollary 3.1. We want to show that the expectation in the 
inverse regression problem, E(z I y), falls in the space 
spanned by q .  By a further conditioning, we can write 
E(z I y) = E[E(z I qTz, y) I y]. NOW, from Li's model ( l . l ) ,  
y depends on z only through rlTz. Hence, given rlTz, y has 
no additional information about z. Thus the inner expec- 
tation is just E(z I qTz), as used by Li in the proof of Theo- 
rem 3.1. Define P, to be the projection operator for the 
column space of q and Q, = I - P,. We can then write 

The first term on the right of (1) is clearly in the subspace 
spanned by the e.d.r. directions, and the second term is in 
the orthogonal compliment. Thus E(z ( y) will be in the 
standardized e.d.r. space only if the second term is 0, which 
will be guaranteed if E(Q,z I qTz) = 0 for a11 q.  Eaton 
(1986) showed that this latter condition characterizes spher- 
ical distributions, and thus the distribution of the original 
x's must be elliptical. When the distribution of z is not 
spherical, equation (1) indicates exactly the space in which 
the inverse expectations will fall. 
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In some cases it may not be true that E(Q,z I qTz) = 0 
for all q ,  but we may be lucky and have E(Q,z I qTz)= 0 
for directions that are close to the true e.d.r. directions. For 
example, set x, - N(0, 1) and x, = x: + E, with E -
N(0, v) and independent of xl .  Since E(x1x2) = E(X: + X ~ E )  
= 0, the standardized predictors are z1 = x, and z2 = x2/ 
s,  where s is the standard deviation of x,, which is equal 
to (2 + v ) " ~ .Suppose first that y = x, . Then the e.d.r, is 
a single direction q = P = (1, o ) ~ .  TO compute E(z I y), 
we need to evaluate E(P,z I y) and E[E(Q,z I qTz) I y]: 

and hence E(z I y) = (x,, x:/s)~. The covariance matrix of 
the slice means will be diag(1, 2/(2 + v)). Thus for large 
v, SIR should find the right answer, but for small v, SIR 
will find two components of roughly equal magnitude, cor- 
responding to the space spanned by the eigenvectors (1, o ) ~  
and (0, I ) ~ .  

Continuing with the example, now suppose y = x,, and 
for simplicity set v = var(c) = 0, the condition in which 
SIR failed in the previous case. Then P = q = (0, I ) ~ ,  and 

and hence E(z I y) = (0, x:/s)~. In this case the sample 
covariance matrix of the slice means will be close to the 
rank 1 matrix with eigenvector (0, llT, and SIR should cor- 
rectly identify the one-dimensional structure even though 
the distribution of the x's is far from elliptically contoured. 

The preceding example may seem overly simple, since 
there is no error in y and only p = 2 predictors. We have 
found, however, that evaluation of inverse regression pro- 
cedures in simplified cases can provide strong insight into 
more complex situations. The above computations, for ex- 
ample, would be appropriate if x, were replaced by several 
predictors, x, were a quadratic function of a linear com- 
bination of those columns, and additional "noise" predic- 
tors x, were added to the system. 

A second string attached to SIR, but not to all inverse 
regression methods, is an inability to diagnose symmetric 
dependence, as discussed by Li in Remark 4.5. For ex- 
ample, suppose that x has a p-dimensional elliptically con- 
toured distribution so z has a p-dimensional spherically 
contoured distribution, and that y = z: + error. The stan- 
dardized e.d.r. space then has a single spanning vector q 
= (1,0,  . . . ,o ) ~ .The reason that SIR can fail in this setting 
can be seen from Figure 1, which shows 2, versus y. The 
response y is used to define slices, so in Figure 1 slices are 
parallel to the z1 axis. The within-slice averages for 2, will 
be near zero and the within-slice averages for the other, 
irrelevant z's will also be near zero. Hence, the eigenvalues 
of the covariance matrix formed from the slice mean vec- 

Figure 1. Slicing When y Is a Quadratic Function of One of the 2's. 

tors are all likely to be of the same magnitude. Finding the 
direction with the largest eigenvalue to correspond to 2, will 
simply be chance, and virtually impossible if p exceeds 3 
or 4. Even with elliptically contoured distributions, the the- 
ory behind SIR guarantees only that the true slice means 
and the eigenvalues of the covariance matrix fall in the e.d.r. 
space, but they need not span it. In this example, E(z I y) 
= 0, which is not a very interesting subspace of the e.d.r. 
space. 

2. SLICED AVERAGE VARIANCE ESTIMATES 

In the example that concludes the last section, SIR failed 
because E(z I y) = 0 for all y. It is clear from Figure 1, 
however, that var(z I y) does change from slice to slice, so 
it may be possible to recover the e.d.r. direction qT = (1, 
0, . . ., 0) by using second or higher moments. Assuming 
elliptical symmetry for x and standardizing to z, we find 
that 

or, equivalently, 

where Q, and P, are the projection operators defined pre- 
viously and the scalar wy is a function of y that depends on 
the particular elliptically symmetric distribution of x (e.g., 
see Johnson 1987, p. 106). It follows that var(z I y) has 
eigenvalue wy with multiplicity p - K, and the correspond- 
ing eigenvectors span the column space of Q,. The re- 
maining eigenvectors span the e.d.r. subspace. Since var(z) 
= I, it follows that E(wy) = 1 and thus wy will vary from 
slice to slice about 1. How to account for variation in wy 
when estimating the e.d.r. directions for a general elliptical 
distribution is still under investigation. 

When x has a normal distribution, wy = 1 for all y, and 
we recover the result on the eigenvectors of var(z I y) men- 
tioned by Li in Remark 4.5. The issue now is how to com- 
bine the information from each of the slices. Our investi- 
gations have followed the general lines suggested by Li: 
either "average" the subspaces corresponding to selected 
eigenvectors in each slice or combine the individual vari- 



330 

ance estimates v&(z I y E I,) into one matrix for estimating 
the e.d.r. subspace, where, as in Li's article, I, is the in- 
dicator set for a particular slice. Although several methods 
are still under investigation, our empirical results to date 
indicate that the following procedure should be useful. With 
equal slice sizes, estimate the e.d.r. subspace by using the 
eigenvectors corresponding to the larger eigenvalues of 

where SAVE is an acronym for sliced average variance 
estimate. The initial motivation for (2) came from the 
identity 

and the fact that the eigenvalues of (I - var(z I y))2 cannot 
be negative. 

To illustrate the kind of results that lead us to believe 
that SAVE might be useful, let zi be a vector of 120 iid 
N(0, 1) variables (i = 1, 2), and set y = ( p  + 21/2z1+ 2ll2 
z212. For this setup, the e.d.r. subspace is spanned by 77T 

= (1, 1). When p = 0, y is quadratic in vTz and as p 
increases, y tends to a linear function of 77Tz. Table 1 gives 
the angle in degrees between the e.d.r. subspace estimated 
by using the eigenvector corresponding to the largest ei- 
genvalue for the indicated method and the true e.d.r. sub- 
space for various values of p .  For completeness, we in- 
cluded, in addition to SIR and SAVE, the principal Hessian 
direction (PHD) described in Li (1990a). A different sam- 
ple was used in each row of Table 1, so comparison be- 
tween rows reflects both sample to sample variation and 
variation as p increases. SIR fails for small values of p but 
does very well for larger values. SAVE does reasonably 
well across all values of p .  

3. IS IT REAL, OR IS IT . . . 
To use inverse regression methods, it is desirable to be 

able to assess the evidence concerning the number of com- 
ponents in model (1.1). Li addresses this point for SIR in 
his Theorem 5.1, where he provides an asymptotic test of 
K components based on X,,-,,, the average of the p - K 
smallest eigenvalues, assuming that the marginal distribu- 
tion of x is normal. We suspect that this test procedure will 
be very nonrobust to departures from normality, even if the 
inverse regression methods are themselves robust. For SIR, 

Table 1. Angle in Degrees Between the Estimated e.d.r. Subspace 

Using the Indicated Method and the True e.d.r. Subspace 


Spanned by T~ = (1, 1) for Various Values of p: z,- N,,(O, 1) 

and y = (p + ,7071Z,+ .7071 z2)' Method 


SIR SA VE P H ~  

87.82 0.74 8.90 
13.04 1.79 12.92 
7.15 1.97 6.93 
4.20 1.32 18.19 
2.00 1.60 13.84 
0.19 0.71 21.31 
0.56 0.81 0.93 
0.03 0.27 33.46 
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any distributional results for the more general case of el- 
liptical data are likely to be difficult or impossible to obtain; 
for SAVE or other possible inverse methods, asymptotics 
are likely to be even less attractive. For nonelliptical x's, 
Condition (3.1) fails, and the problem is more complicated 
because the space spanned by the eigenvectors correspond- 
ing to the nonzero eigenvalues of the relevant matrix may 
not be contained in the e.d.r. space. 

As an alternative to asymptotics, we suggest considering 
a permutation test to assess significance. Using SIR or SAVE, 
for example, slices are determined according to the values 
of the response, y. To estimate a permutation distribution 
for X,,-,, or any other statistic, replace y by a random per- 
mutation of y; compute the relevant statistic using SIR or 
SAVE and the same slice sizes used with the original fit; 
repeat m times, where m could be taken to be 19, 49, or 
99, for example; and report the fraction of times the ob- 

-served value of X,,-,, in the data exceeds the value of 
A,,-,, based on the permuted data. The computational sim- 
plicity of SIR and SAVE make this practical. This method 
will provide an estimate of a p value as long as the eigen- 
vectors fall in the e.d.r. space, or for SIR for any elliptical 
distribution for x, and for SAVE if the x's are normally 
distributed. 

4. EXAMPLES 

4.1 Cotton Data 

Consider the cotton data as described by Davies (1956, 
p. 333). The response is the yield of a direct cotton dyestuff 
under various combinations of three factors labeled C, N, 
and V. The design is a 33, with each point replicated twice 
for a total of 54 observations. In the conventional analysis 
of a full second-order quadratic, the coefficients of C, V, 
CV, and v2are all about three standard errors away from 
zero, while the coefficient of c2is about 10 standard errors 
from zero. The remaining effects are relatively small. 

Figure 2 is a plot of the response versus the first SIR 
direction calculated with 10 slices. There is no clear indi- 
cation of a relationship, a conclusion that is confirmed by 
the test statistics suggested by Li, he or em 5.1. Figure 3 
is a plot of the response versus the first SAVE direction 
(which is close to the first PHD in this example). In contrast 
to SIR, SAVE shows a clear quadratic trend in its first di- 
rection. Further, the qualitative indications of the direction 
vector (C, N, V) = (.84, .12, -.54) agree with those of 
the conventional analysis. The difference between SIR and 
SAVE in this example is similar to the differences predicted 
from Table 1. How to cany on with the analysis and turn 
plots such as Figure 3 into a predictive or interpretative 
model needs further investigation, but the present meth- 
odology does have the ability to provide some reasonable 
diagnostic indications. 

4.2 Land Rent Data 

Returning to data analysis based on SIR alone, recall that 
it has the ability to detect when y depends on x through 
E(y I x), var(y I x), or any other moment. We have been 
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Figure 2. Plot of the Response Y Versus the First SIR Direction for 
the Cotton Data. 

pleasantly surprised at SIR'S ability to diagnose hetero- 
scedasticity. Consider, for example, the land rent data as 
reported in Weisberg (1985, p. 162). For n = 67 Minnesota 
counties, y = average rent per acre planted to alfalfa, x, = 

average rent for all tillable land, x, = number of dairy cows 
per square mile, and x, = proportion of farm land used for 
pasture. Figure 4 gives a plot of the studentized residuals 
versus the fitted values for the first-order model with a con- 
stant. The usual pattern indicating that var(y I x) is increas- 
ing with E(y I x) is clearly evident, a conclusion that is 
confirmed by the score test (Cook and Weisberg 1983). 

To see if SIR would detect heteroscedasticity in the land 
rent data, we first applied the methodology to the raw data. 
The resulting plot of y versus the first e.d.r. direction is 
given in Figure 5. With 10 slices, the first e.d.r. direction 
is (.043, .023, .999), which is very close to the normalized 

Figure 4. Fitted Values Versus Studentized Residuals for the Land 
Rent Data. 

least squares direction from the conventional analysis, (.080, 
.041, .996). The tests associated with SIR indicate a single 
dominant direction. Nevertheless, heteroscedasticity is not 
evident in the analysis to this point, and it is difficult to 
see how to address the question in a SIR analysis without 
some sort of residualization, which in turn requires a model 
that is more specific than (1.1). 

Figure 6 is the result of applying SIR to the studentized 
residuals from the conventional analysis. The e.d.r. direc- 
tion vector is very close to that from Figure 5, the chi- 
squared tests again indicate a single dominant direction and 
heteroscedasticity seems clear. Thus SIR can be used to 
detect heteroscedasticity but apparently only after the effect 
of the dominant direction in Figure 5 has been removed. 
This example seems to reenforce the idea that combining 
SIR with conventional modeling has some promise. 

Figure 3. Plot of the Response Y Versus the First SAVE Direction Figure 5. Response Versus the First e.d.r. Direction for the Land 
for the Cotton Data. Rent Data. 



Figure 6. Plot of Studentized Residuals From the Land Rent Data 
Versus Minus the First e.d.r. Direction. 

5. GRAPHICAL METHODS 

There are several graphical aids that provide a useful 
summary of the estimated inverse regression. The main 
plotting method is simply of {xTB1, y, xTb2, . . .,xTbK} as a 
K + 1 dimensional plot (the axes of the plot are listed in 
the order {x axis, y axis, z axis, . . .}), where the p, are 
ordered according to the sizes of the corresponding eigen- 
values. Multidimensional views of this plot are required be- 
cause, as Li points out, all that will be produced by inverse 
regression methods is an estimate of the e.d.r. space, so 
linear combinations of the plotted quantities may be more 
interesting than the quantities themselves. We look at this 
plot first as a rotating 3-D plot of {xTb1, y, xT6,) and then 
examine further dimensions as necessary by using a re- 
stricted grand tour (a similar idea is given by Buja, Asi- 
mov, Hurley , and McDonald 1988, p. 290). The idea here 
is to keep fixed the quantity on the y axis, the original data 
or in some applications a type of residual, while allowing 
the other two axes to change. We accomplish this by choos- 
ing a random 2-D projection of K-dimensional space and 
displaying a sequence of 2-D projections intermediate be- 
tween the currently displayed 2-D projection and the new, 
randomly chosen one. This gives a sequence of 2-D snap- 
shots of K + 1-dimensional space. If, in addition, we rotate 
the plot while changing projections, we can see a sequence 
of 3-D snapshots in K + 1-dimensional space. We find that 
some structures can be found only while viewing 3-D pro- 
jections through rotation. Improving on the random choice 
of the 2-D subspaces is under investigation. 

When SIR is used, the estimated standardized e.d.r. space 
is determined by the eigenvectors of the covariance matrix 
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of the standardized within-slice means. Let 2 be the H X 

p matrix of the slice means, and let 2, be 2 with columns 
centered at zero. Then a basis for the estimated standard- 
ized e.d.r. space is given by right singular vectors corre- 
sponding to the K largest singular values of Z,, and the 
corresponding left singular vectors give the coordinates of 
the rows of 2, relative to the basis determined by the right 
singular vectors. The left singular vectors, which should 
fall approximately in the e.d.r. space, can then be displayed 
in a multidimensional plot. This plot is useful for showing 
consistency, strength of relationship, and, in particular, 
outlying or otherwise unusual slices. It can also be viewed 
via a grand tour, but without the restriction that leaves the 
y axis fixed. 

6. MORE TO COME. . . 
We believe that Ker-Chau Li's work on using inverse 

regression to make inferences about forward regression will 
evolve into an important part of standard statistical meth- 
odology. This will probably happen in concert with the use 
of interactive, high-dimensional graphics. Indeed, we be- 
lieve that the inverse regression problem has a key role to 
play in helping the analyst use graphical methods sensibly. 

The work in this article is hardly the end of the story, 
however, as much additional effort will be required to make 
the methodology truly useful. Several variations on the ba- 
sic theme can be used to compute estimates of the e.d.r. 
and comparisons of these need to be done. How can ad- 
ditional information, such as known relationships between 
variables, be used in the analysis? Can nonelliptical data, 
particularly functionally related data and data with indicator 
variables, be handled; if so, how? What is the "optimal" 
method of residualization? Perhaps most important, how can 
inverse regression be incorporated into a complete data 
analysis system? 
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